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The hydroxo ligand (OH) has been shown to be a 
more effective bridging ligand than the aqua ligand 
(H,O), to the extent that the rate ratios kon:kn,o 
have been used [l-4] to diagnose the mechanisms 
of some electron-transfer reactions. When substitution- 
labile reductants such as U3+, Cr3+, Eu*+, Cu+, V*+ 
[l-4] reduce hydroxo and aqua complexes, very 
high rate ratios koH:kr.r,o are obtained and inner- 
sphere mechanism is proposed; but when substitu- 
tion-inert reductants such as Ru(NH~)~*+ [S] and 
Cr(bipy),*+ [2] are employed, low rate ratios are 
obtained and outer-sphere mechanism is proposed. 

Here we report the reductions of Co(NH3)sXn+ 
(X = H20, OH, n = 2 or 3) and the pentacyano- 
analogues Co(CN)sX”- by the mild and moderately 
substitution-labile reductant Ru(NH3)sH202+. This 
reductant is much less substitution-labile than U3+, 
Cr*+ Eu*+ etc., but more substitution-labile than 
Ru(NH3)e2+ [6]. The inclusion of the pentacyano 
analogues of the oxidants (Co(CN)sXT is aimed 
at investigating the effect which the replacement 
of the five u-bonded ammonia ligands in Co(NH3)s- 
Xn’ by five n-bonded cyano ligands (Co(CN)sX”) 
could have on the redox reactivity of cobalt(II1) 
ion centre. Moreover, these two types of cobalt(II1) 
complexes are oppositely charged and their inter- 
actions with Ru(NH3)sH202+ could lead to different 
redox behaviours. 

Experimental 

Materials 
CO(NH~)~H~O~+ was synthesised and characterised 

as described in literature [7]. Co(CN)sH202- was 
prepared in situ from COINER- [8,9] as describ- 
ed in literature and it was kept in vessels wrapped 
with aluminium foil because of its light-sensitivity 
[9]. It was certified pure by its IR and UV-Vis 
absorption spectra [lo]. Co(NH,),O~’ and 
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Co(CN)sOH3- were generated in situ from the aqua 
analogues at alkaline pH using NH3/NH4C1 buffer 

[51. 
Ru(NH3)sH202+ was generated by the zinc 

amalgam reduction of purified ]Ru(NHs)5Cl] Cl2 
in an argon atmosphere [6]. HCl used wa$- Analar 
grade, and the ionic strength reagent LiCl (Hopkins 
and Williams reagent grade) was twice recrystallised. 

Kinetics 
All the reactions were monitored on a Pye Uni- 

cam UV-Vis SPSOO spectrophotometer equipped 
with a direct read-out absorbance recorder, and 
in an argon gas atmosphere as a result of the oxygen- 
sensitivity of Ru(NH3)sH202+. The ionic strength 
was maintained at 0.20 mol dme3 with LiCl as a 
result of the limited solubility of Ru(I1) [l l] . 
Absorbance changes were monitored at the UV 
absorption peak [12] of Ru(NH3)sH202+ (X,, = 
300 nm, E = 1.18 X lo3 dm3 mol-’ cm-‘) with the 
concentrations of the Co(II1) complexes in excess 
PlO fold) over those of the Ru(I1) reductant. The 
reaction temperature was maintained at 25.0 + 
0.1 “C by circulating water from a regulated water- 
bath around the cell compartment. Pseudo first-order 
rate plots were linear to at least four half-lives in 
all cases. 

Results 

The stoichiometry of each reaction was checked 
as usual [12] and confirmed to be 1 mol of Co(II1) 
consumed by 1 mol of Ru(I1). 

All the kinetic data fit the second-order rate law: 

-d [Ru(II)] 

dt 
= kobs [WIQI [cO(III)l (1) 

The observed second-order rate constants kobs 

are independent of acid concentration in the range 
[H’] = 0.02-0.10 mol dmm3, and of pH in the range 
pH = 8-10 (Table I). 

Discussion 

All the second-order rate constants obtained in 
this study, are higher than the characteristic substitu- 
tion rate constants [12, 131 for Ru(NH3)sH202+ and 
therefore we suggest that the redox reactions occur 
by outer-sphere mechanism. 

The rate ratios kOH:kH o for the hydroxo/aqua 
pairs Co(NH3)s0H2+,Co(Nk3)sH203+ and Co(CN)s- 
0H3-/Co(CN)sH202- as obtained from Table I are 
2.0 and 0.6, respectively. These, when compared 
with others (Table II) suggest that the reductions of 
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TABLE I. Observed Second-order Rate Constants (&us) for the Reductions of Co(NHa)sXnt and Co(CN)sXn- (n = 2 or 3, X = 
OH, HsO) by Ru(NHs)s Hz Oa’ at 25 “C, Z = 0.20 mol dme3 (LiCl) 

Reaction lo4 [Co(III)]e 10 [Ru(II)]e W+l k obs 
(mol dme3) (mol dme3) (mol dme3) (dm3 mol-’ s-l ) 

Ru(NH3)sH202++ Co(NH3)sHZ03+ 8.0 6.0 0.02 
16.0 10.0 0.02 
32.0 20.0 0.02 
32.0 20.0 0.05 
16.0 10.0 0.10 
20.0 10.0 0.10 
32.0 20.0 0.10 
35.0 25.0 0.10 

Ru(NHa)sH202+ + Co(CN)sH202- 8.1 6.0 0.02 
9.1 6.0 0.02 

15.2 10.0 0.02 
22.3 10.0 0.05 
25.0 10.0 0.05 

8.1 6.0 0.10 
15.0 10.0 0.10 
25.0 15.0 0.10 

Ru(NH&H202++ Co(NH3)s0H2+ 8.0 6.0 
IO.0 10.0 
15.0 8.0 
20.0 10.0 
25.0 15.0 
10.0 10.0 
20.0 10.0 

Ru(NH3 )5 Hz 02+ + Co(CN)s0H3- 8.1 6.0 8.0 
9.1 6.0 8.0 

15.0 8.0 9.0 
20.0 10.0 9.0 
15.0 8.0 10.0 
24.2 20.0 10.0 

PH 
8.0 
8.0 
9.0 
9.0 
9.0 

10.0 
10.0 

0.42 
0.45 
0.41 
0.43 
0.46 
0.44 
0.41 
0.39 

Average kobs = 0.43 f 0.02 

0.91 
0.96 
0.95 
1.08 
1.02 
0.94 
0.91 
0.93 

Average kobs = 0.96 f 0.06 

0.84 
0.90 
0.86 
0.94 
0.90 
0.80 
0.85 

Average kobs = 0.87 f 0.06 

0.58 
0.56 
0.65 
0.59 
0.58 
0.63 

Average kobs = 0.60 f 0.02 

TABLE II. koH:k 
3 

0 
2 or 3. X = OH, H2 

Ratios for the Reductions of some Co(NHs)sXn’, Co(CN)sX”- Ru(NH3)sXn+ and Fe(HaO)sX”+ (n = 
) Complexes by some Reductants 

Reaction 

U3+ + Co(NH3),X n+ 

Cu2+ + Co(NH3)sX 
n+ 

Cr2+ + Co(NHs X X”+ 
V2+ + Co(NH3)sX n+ 

Cr2++ Fe(HZO)sX”+ 
Eu2+ + Fe(H2 0)s X”+ 
V2+ + Fe(H2 O$ X”+ 
Ru(NH3)sH20 + + Co(NH3)sX”+ 
Ru(NH3)sH202+ + Co(CN)sXn- 
U* + n+ Ru(NH3)sX 
Ru(NH3 ) 
Cr(bipy)>‘:C$r$):$’ 

*I.S., inner sphere; O.S., outer sphere. 

kowkqo Mechanisma Reference 

very large IS. 1 
3.8 x 10’ IS. 3 
3.0 x 10s I.S. 2 
Gl x lo5 I.S. 2 
1.4 x lo3 IS. 4 
1.35 x lo3 IS. 4 
<20 O.S. 2 
2.0 OS. this work 
0.6 O.S. this work 
0.5 O.S. 17 
1.3 x 1o-2 O.S. 
1.0 x 1o-2 

5 
OS. 2 
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Co(NHs)sX”+ and Co(CN)sX” by Ru(NHa)sH202+ 
occur by outer-sphere mechanism. K, for Co(NHs)s- 
H203+ as represented by the equilibrium: 

Co(NH3)sH203+ &o(NH3),0H2+ + H+ (2) 

is 6.1 X lo- mol dme3 [14] at 25 “C and I= 0.30 
mol dmm3 (LiC104). In acid medium, such as the one 
used in this study ([H’] = 0.02-0.10 mol dmm3), 
only a very small amount of the hydroxo species is 
present in equilibrium with the aqua species. Since 
the koH:krrO ratio is small, no detectable acid- 
dependence of kobs was observed (Table I). In other 
previous systems involving labile reductants [l-4] , 
for which inner-sphere mechanism has been propos- 
ed, the rate ratios koH:kHzO are very large and the 
small amounts of the hydroxo species present in 
equilibrium with the aqua species are sufficient to 
make acid-dependence detectable. 

The ammonia ligands in Co(NH3)sXn+ are more 
weakly bound to cobalt than the cyano ligands in 
Co(CN)sX” [15, 161 and therefore greater reacti- 
vity is expected from Co(NH3)sX”+. While the ratio 
kNH,:kcN for the hydroxo species is 1.5, it is 0.5 for 
the aqua species (Table I). There is therefore not 
much reactivity difference between the pentaammine- 
and the pentacyano- species. However, the expected 
reactivity difference in terms of non-bridging ligand 
effects [3, 15, 161, might have possibly been cancel- 
led by the more favourable coulumbic interactions 
between the negatively charged pentacyano- com- 
plexes Co(CN)sX” and Ru(NH3)sH202+ than 
between Co(NH3)sX”+ and Ru(NH3)sH202+. 
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