The Reductions of Hydroxo- and Aquapentaamminecobalt(III); and of Hydroxo- and Aquapentacyanocobaltate(III) by Aquapentaammine-ruthenium(II) in Aqueous Solution

J. FOLORUNSO OJO, OLUSEGUN OLUBUYIDE* and OLAYINKA OYETUNJI

Department of Chemistry, University of Ife, Ile-Ife, Nigeria (Received May 14, 1986)

The hydroxo ligand (OH) has been shown to be a more effective bridging ligand than the aqua ligand (H₂O), to the extent that the rate ratios $k_{OH}:k_{H_2O}$ have been used [1-4] to diagnose the mechanisms of some electron-transfer reactions. When substitutionlabile reductants such as U³⁺, Cr³⁺, Eu²⁺, Cu⁺, V²⁺ [1-4] reduce hydroxo and aqua complexes, very high rate ratios $k_{OH}:k_{H_2O}$ are obtained and innersphere mechanism is proposed; but when substitution-inert reductants such as Ru(NH₃)₆²⁺ [5] and Cr(bipy)₃²⁺ [2] are employed, low rate ratios are obtained and outer-sphere mechanism is proposed.

Here we report the reductions of $Co(NH_3)_5 X^{n+}$ (X = H₂O, OH, n = 2 or 3) and the pentacyanoanalogues Co(CN)₅Xⁿ⁻ by the mild and moderately substitution-labile reductant Ru(NH₃)₅H₂O²⁺. This reductant is much less substitution-labile than U³⁺, Cr²⁺, Eu²⁺ etc., but more substitution-labile than Ru(NH₃)₆²⁺ [6]. The inclusion of the pentacyano analogues of the oxidants (Co(CN)₅Xⁿ⁻) is aimed at investigating the effect which the replacement of the five σ -bonded ammonia ligands in Co(NH₃)₅-Xⁿ⁺ by five π -bonded cyano ligands (Co(CN)₅Xⁿ⁻) could have on the redox reactivity of cobalt(III) ion centre. Moreover, these two types of cobalt(III) complexes are oppositely charged and their interactions with Ru(NH₃)₅H₂O²⁺ could lead to different redox behaviours.

Experimental

Materials

 $Co(NH_3)_5H_2O^{3+}$ was synthesised and characterised as described in literature [7]. $Co(CN)_5H_2O^{2-}$ was prepared *in situ* from $Co(CN)_5N_3^{3-}$ [8, 9] as described in literature and it was kept in vessels wrapped with aluminium foil because of its light-sensitivity [9]. It was certified pure by its IR and UV-Vis absorption spectra [10]. $Co(NH_3)_5OH^{2+}$ and $Co(CN)_5OH^{3-}$ were generated *in situ* from the aqua analogues at alkaline pH using NH₃/NH₄Cl buffer [5].

 $Ru(NH_3)_5H_2O^{2+}$ was generated by the zinc amalgam reduction of purified $[Ru(NH_3)_5Cl]Cl_2$ in an argon atmosphere [6]. HCl used was Analar grade, and the ionic strength reagent LiCl (Hopkins and Williams reagent grade) was twice recrystallised.

Kinetics

All the reactions were monitored on a Pye Unicam UV-Vis SP500 spectrophotometer equipped with a direct read-out absorbance recorder, and in an argon gas atmosphere as a result of the oxygensensitivity of $Ru(NH_3)_5H_2O^{2+}$. The ionic strength was maintained at 0.20 mol dm⁻³ with LiCl as a result of the limited solubility of Ru(II) [11]. Absorbance changes were monitored at the UV absorption peak [12] of $Ru(NH_3)_5H_2O^{2+}$ ($\lambda_{max} =$ 300 nm, $\epsilon = 1.18 \times 10^3 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) with the concentrations of the Co(III) complexes in excess $(\geq 10 \text{ fold})$ over those of the Ru(II) reductant. The reaction temperature was maintained at 25.0 ± 0.1 °C by circulating water from a regulated waterbath around the cell compartment. Pseudo first-order rate plots were linear to at least four half-lives in all cases.

Results

The stoichiometry of each reaction was checked as usual [12] and confirmed to be 1 mol of Co(III) consumed by 1 mol of Ru(II).

All the kinetic data fit the second-order rate law:

$$\frac{-\mathrm{d}[\mathrm{Ru}(\mathrm{II})]}{\mathrm{d}t} = k_{\mathrm{obs}}[\mathrm{Ru}(\mathrm{II})][\mathrm{Co}(\mathrm{III})]$$
(1)

The observed second-order rate constants k_{obs} are independent of acid concentration in the range $[H^*] = 0.02-0.10 \text{ mol dm}^{-3}$, and of pH in the range pH = 8-10 (Table I).

Discussion

All the second-order rate constants obtained in this study, are higher than the characteristic substitution rate constants [12, 13] for $Ru(NH_3)_5H_2O^{2+}$ and therefore we suggest that the redox reactions occur by outer-sphere mechanism.

The rate ratios $k_{OH}:k_{H_1O}$ for the hydroxo/aqua pairs Co(NH₃)₅OH²⁺/Co(NH₃)₅H₂O³⁺ and Co(CN)₅-OH³⁻/Co(CN)₅H₂O²⁻ as obtained from Table I are 2.0 and 0.6, respectively. These, when compared with others (Table II) suggest that the reductions of

^{*}Author to whom correspondence should be addressed.

Reaction	$10^4 [Co(III)]_0$ (mol dm ⁻³)	$10^{5} [Ru(II)]_{0}$ (mol dm ⁻³)	[H ⁺] (mol dm ⁻³)	k_{obs} (dm ³ mol ⁻¹ s ⁻¹)
Ru(NH ₃) ₅ H ₂ O ²⁺ + Co(NH ₃) ₅ H ₂ O ³⁺	8.0	6.0	0.02	0.42
	16.0	10.0	0.02	0.45
	32.0	20.0	0.02	0.41
	32.0	20.0	0.05	0.43
	16.0	10.0	0.10	0.46
	20.0	10.0	0.10	0.44
	32.0	20.0	0.10	0.41
	35.0	25.0	0.10	0.39
			Ave	rage $k_{obs} = 0.43 \pm 0.02$
$Ru(NH_3)_5H_2O^{2+}+Co(CN)_5H_2O^{2-}$	8.1	6.0	0.02	0.91
	9.1	6.0	0.02	0.96
	15.2	10.0	0.02	0.95
	22.3	10.0	0.05	1.08
	25.0	10.0	0.05	1.02
	8.1	6.0	0.10	0.94
	15.0	10.0	0.10	0.91
	25.0	15.0	0.10	0.93
			Ave	erage $k_{obs} = 0.96 \pm 0.06$
2+ 2+			pH	
$Ru(NH_3)_5H_2O^{2+} + Co(NH_3)_5OH^{2+}$	8.0	6.0	8.0	0.84
	10.0	10.0	8.0	0.90
	15.0	8.0	9.0	0.86
	20.0	10.0	9.0	0.94
	25.0	15.0	9.0	0.90
	10.0	10.0	10.0	0.80
	20.0	10.0	10.0	0.85
			Ave	erage $k_{obs} = 0.87 \pm 0.06$
Ru(NH ₃) ₅ H ₂ O ²⁺ + Co(CN) ₅ OH ³⁻	8.1	6.0	8.0	0.58
	9.1	6.0	8.0	0.56
	15.0	8.0	9.0	0.65
	20.0	10.0	9.0	0.59
	15.0	8.0	10.0	0.58
	24.2	20.0	10.0	0.63
			Ave	rage $k_{obs} = 0.60 \pm 0.02$

TABLE I. Observed Second-order Rate Constants (k_{obs}) for the Reductions of Co(NH₃)₅Xⁿ⁺ and Co(CN)₅Xⁿ⁻ (n = 2 or 3, X = OH, H₂O) by Ru(NH₃)₅H₂O²⁺ at 25 °C, $I = 0.20 \text{ mol dm}^{-3}$ (LiCl)

TABLE II. $k_{OH}:k_{H,O}$ Ratios for the Reductions of some Co(NH₃)₅Xⁿ⁺, Co(CN)₅Xⁿ⁻ Ru(NH₃)₅Xⁿ⁺ and Fe(H₂O)₅Xⁿ⁺ (n = 2 or 3, X = OH, H₂O) Complexes by some Reductants

Reaction	$k_{OH}:k_{H_2O}$	Mechanism ^a	Reference
$U^{3+} + Co(NH_3)_5 X^{n+}$	very large	I.S.	1
$Cu^{2+} + Co(NH_2) \cdot X^{n+}$	3.8×10^{5}	I.S.	3
$Cr^{2+} + Co(NH_3)_5 X^{n+}$ $V^{2+} + Co(NH_3)_5 X^{n+}$	3.0×10^{5}	1.S.	2
$V^{2+} + Co(NH_3)_5 X^{n+}$	$<1 \times 10^{5}$	1.S.	2
C_{τ}^{4+} + Ee(H ₂ O), X^{n+}	1.4×10^{3}	1.S.	4
$Eu^{2+} + Fe(H_2O)_5 X^{n+}$ $V^{2+} + Fe(H_2O)_5 X^{n+}$	1.35×10^{3}	I.S.	4
$V^{2+} + Fe(H_2O)_5 X^{n+}$	<20	O.S.	2
$Ru(NH_3)_{s}H_2O^{**} + Co(NH_3)_{s}X^{**}$	2.0	O.S.	this work
$Ru(NH_3)_5H_2O^{2+} + Co(CN)_5X^{n-}$	0.6	O.S.	this work
U^{3+} + Ru(NH ₂) ₆ X ⁿ⁺	0.5	O.S.	17
$Ru(NH_3)_6^{2+} + Co(NH_3)_5 X^{n+}$	1.3×10^{-2}	O.S.	5
$Ru(NH_3)_6^{2+} + Co(NH_3)_5 X^{n_+}$ Cr(bipy) ₃ ²⁺ + Co(NH ₃) ₅ X ^{n_+}	1.0×10^{-2}	O.S.	2

^aI.S., inner sphere; O.S., outer sphere.

 $Co(NH_3)_5 X^{n^+}$ and $Co(CN)_5 X^{n^-}$ by $Ru(NH_3)_5 H_2 O^{2^+}$ occur by outer-sphere mechanism. K_a for $Co(NH_3)_5 - H_2 O^{3^+}$ as represented by the equilibrium:

$$\operatorname{Co(NH_3)_5H_2O^{3+}} \overset{K_a}{\longleftrightarrow} \operatorname{Co(NH_3)_5OH^{2+}+H^{+}}$$
(2)

is 6.1×10^{-7} mol dm⁻³ [14] at 25 °C and I = 0.30 mol dm⁻³ (LiClO₄). In acid medium, such as the one used in this study ([H⁺] = 0.02-0.10 mol dm⁻³), only a very small amount of the hydroxo species is present in equilibrium with the aqua species. Since the $k_{OH}:k_{H_2O}$ ratio is small, no detectable acid-dependence of k_{obs} was observed (Table I). In other previous systems involving labile reductants [1-4], for which inner-sphere mechanism has been proposed, the rate ratios $k_{OH}:k_{H_2O}$ are very large and the small amounts of the hydroxo species present in equilibrium with the aqua species are sufficient to make acid-dependence detectable.

The ammonia ligands in $Co(NH_3)_5 X^{n^+}$ are more weakly bound to cobalt than the cyano ligands in $Co(CN)_5 X^{n^-}$ [15, 16] and therefore greater reactivity is expected from $Co(NH_3)_5 X^{n^+}$. While the ratio $k_{NH_3}:k_{CN}$ for the hydroxo species is 1.5, it is 0.5 for the aqua species (Table I). There is therefore not much reactivity difference between the pentaammineand the pentacyano- species. However, the expected reactivity difference in terms of non-bridging ligand effects [3, 15, 16], might have possibly been cancelled by the more favourable coulumbic interactions between the negatively charged pentacyano- complexes $Co(CN)_5 X^{n^-}$ and $Ru(NH_3)_5 H_2 O^{2^+}$.

Acknowledgement

We appreciate financial support from the University of Ife Research Grants Committee.

References

- 1 R. T. Wang and J. H. Espenson, J. Am. Chem. Soc., 93, 380 (1971).
- 2 A. Zwickel and H. Taube, J. Am. Chem. Soc., 83, 793 (1961).
- 3 O. J. Parker and J. H. Espenson, J. Am. Chem. Soc., 91, 1968 (1969).
- 4 D. W. Carlyle and J. H. Espenson, J. Am. Chem. Soc., 90, 2272 (1968).
- 5 J. F. Endicott and H. Taube, J. Am. Chem. Soc., 86, 1686 (1964).
- 6 J. O. Ehighaokhuo, J. F. Ojo and O. Olubuyide, J. Chem. Soc., Dalton Trans., 1665 (1985).
- 7 E. S. Gould and H. Taube, J. Am. Chem. Soc., 86, 3388 (1964).
- 8 M. Linchard and H. Flygare, Z. Anorg. Chem., 262, 328 (1950).
- 9 W. K. Wilmarth, R. Barca, J. Ellis and M. Tsao, *Inorg. Chem.*, 6, 243 (1967).
- 10 W. L. Wilmarth and A. Haim, Inorg. Chem., 1, 573 (1962).
- 11 A. Adegite, M. Dosumu and J. F. Ojo, J. Chem. Soc., Dalton Trans., 630 (1977).
- 12 G. Daramola, J. F. Ojo, O. Olubuyide and F. Oriaifo, J. Chem. Soc., Dalton Trans., 2137 (1982).
- 13 R. E. Shepherd, A. Persoons and L. D. Maeyer, *Inorg. Chem.*, 12, 1392 (1973).
- 14 R. C. Splinter, S. J. Harris and R. S. Tobias, *Inorg. Chem.*, 7, 897 (1968).
- 15 P. Benson and A. Haim, J. Am. Chem. Soc., 87, 3826 (1965).
- 16 C. Bifano and R. G. Linck, J. Am. Chem. Soc., 89, 3945 (1967).
- 17 A. Adegite, J. F. Ojo and J. F. Iyun, J. Chem. Soc., 115 (1977).